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ABSTRACT 
We determine explicit denominators for the Poincar~ series of (a) the 
invariants of m generic N x N matrices, and (b) the ring generated by 
m generic N x N matrices and their traces, for N < 4. For N < 3we 
prove (and for N ---- 4 we conjecture) that the denominators we obtain are 
of minimum degree. We also give explicit rational fractions for both series 
for small values of m and N. 

1. I n t r o d u c t i o n  

In this paper  we investigate the Poincar~ series for the ring of invar iants  of an  

m- tup le  of N x N matrices (N < 4) using results of Van den Bergh IV]. There  

are a n u m b e r  of equivalent  ways to define this series; the one we prefer uses 

generic matrices.  Let F be a field of characteristic 0, and  let X 1 , . . . , X m  be 

N x N matr ices  whose entries are independent  indeterminates  in some commuta-  

tive F-a lgebra .  Let R be the F-a lgebra  generated by  X 1 , . . . ,  Xm,  C the algebra 

generated by traces of elements of R, a n d / ~  the algebra generated by R and  C', 

regarding the members  of C' as scalars. Each of the rings R, C' a n d / ~  has an  
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m-fold grading by multidegree, and so each has a (symmetric) Poincar~ series in 

the variables t l , .  • •, tin. 

Our interest in this paper will be in the Poincar~ series of C and/~ ,  both of 

which are known to be rational functions. We determine explicit denominators 

for both  series for N <_ 4 and all m, and for N _< 3 prove that  these are the 

denominators of minimum degree. For example, in the case of 3 x 3 matrices, 

the denominator of minimum degree for the Poincard series of C is 

I I ( 1  - ti)(1 - t~)(1 - t~) I I ( 1  - titj)2(1 - t~tj)(1 - tit~) [ I  (1 - titjtk), 
i i< j  i < j < k  

and for the Poincarfi series of R it is 

1 - I ( 1 - t i ) : ( 1 - t ~ ) 1 1 ( 1 - t C J ) 2 ( ~ - t h j ) ( l - t ¢ ~ )  I-[ 
i i < j  i < j < k  

In the case N = 4, the denominators we obtain are minimal for m = 2, and we 

conjecture this to be true for all m. We also determine explicit rational fractions 

for both  series in the cases (m, N) = (2, 3), (3, 3), and (2, 4). The series for 

in the cases (re, N)  = (2, 3) and (2,4) were first obtained by Teranishi in IT1] 

and [T2], although the latter appears with typographical errors. 

2. T h r e e  f o r m u l a s  

Let PN(C)(tl , . . .  ,t,~) and PN(R)(tl , . . . , t in) denote the eoincar~ series of m 

generic N × N matrices with trace, as above. In statements that  apply to both  

series, we will simply write PN. In this section we present three formulas for 

PN(C) and PN(R) from the literature. The first two can be found in Section 6 

of [F] (an excellent introduction to the subject) and are based on Procesi 's work 

in [P]. The third is due to Van den Bergh and is derived from the second using 

graph theory. 

Let A denote a parti t ion of an integer n, X ~ the corresponding irreducible 

S~-character, and s~(tl , . . . ,  tin) the corresponding Schur function. We use Fr to 

denote the Frobenius homomorphism, i.e., the linear map from S~-characters to 

homogeneous symmetric polynomials of degree n in which Fr(x ~) --s~ ( Q , . . . ,  tin). 
Define an S,~-character 

0~ )= ~ )~  ®)/~, 
~-=(~1 ,~ , - - . ,~N)  

where the sum ranges over partitions of n with at most N parts, and the tensor 

denotes pointwise product (i.e., the operation corresponding to tensor products 

of S~-modules). 
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THEOREM 2.1: We have 

= Z 
n>0 

PN([t)(tl,. . ., tin) = E Fr(O(Nn+I)$s~)(Q'" " tin). 
n>O 

Both series are also expressible as integrals over the torus 

{ ( Z l , . . .  , zN)  ~ C N : Izil = 1} 

with respect to Haar measure du = (27rvfZ1)-N(zl --- ZN)-ldzl A ...  A dZN as 

follows. 

THEOREM 2.2: / f  ]Q] < 1 , . . . ,  ]tm] < 1, then we have 

1/ 
PN(C)(tl , . .  . , tm) = -~. 

1/ 
PN(f~)(tl,...  , tm)= ~ .  

[Ii~j(2 ~-- Ziz;l~) dlJ, 
[Ii,j,k(1 - Ziz;ltk) 

-_ z z;1 d,  
I-i~,~,k(1 - z~z/hk) ~,j 

The third theorem is the main tool of this paper. It  is based on Theorem 2.2 

and expresses PN as the limit of an explicit but complicated sum of rational 

functions. To describe this sum, define F to be the directed graph with vertices 

{ 1 , . . . , N }  and edges e(a,/3, k) (1 _< a ~ / 3  < N, 1 < k < m) directed from a 

to/3. Let T denote the set of spanning trees of F such that  every vertex has a 

directed pa th  in the tree to vertex 1. 

Choose indeterminates t(a,/3, k) for each edge e(a,/3, k) and, for any subset 

E of the edge set of F, define w(E) to be the product of t(a,/3, k) over all 

e(~, /3 ,  k) c E .  

For each tree T E T,  let Ta denote the set of edges in the (unique) path  in T 

from vertex a to vertex 1, and define 

fT = H (1 - w(T~)/w(T~)), gT = E w(T~). E 1/w(T~), 
a ¢ ~  a a 

hT= H (1-t(a, /3 ,  k)w(T~)/w(T~)). 

Here then is Van den Bergh's result (see Theorem 5.5 of IV]): 
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THEOREM 2.3: For m, N > 2 but not (m, N) = (2, 2), we have 

1 1 . lim ~ fT/hT, PN(C)(tl,....,tm) = N.vH,. (1 ---ti) N t(~,~,k)-~tk~E T 

1 1 • lim E gTfT/hT. PN([~)(tl,... ,tm) = N W H (1 _-~)N 
i t(a,/3,k)--~tk T E T  

When m = N = 2, the formula for PN(C) is valid, but the one for Pg([t) 
is not. 

3. D e n o m i n a t o r s  

The use of Theorem 2.3 is complicated by the fact that  the individual summands  

fT/hT and gTfT/hT may be singular in the limit t(a, ~, k) --+ tk. However, we 

shall see that  it is possible to partition 7" into small equivalence classes so that  

the sum of the terms indexed by each equivalence class has a nonsingular limit. 

We adopt the convention that  if f is any rational function of the variables 

t(a,l~, k), then ] shall denote the limit of f as t(a, fl, k) ~ tk (assuming this 

limit exists). In particular, if E is a subset of the edge set of F, then @(E) is the 

product of tk as e(a, ~, k) ranges over E. 

We say that  a subgraph S of F is i so t rop ic  if 

(1) There are no directed cycles in S. 

(2) Vertex 1 is the unique sink of S. 

(3) For every directed path  E in S, ~ ( E )  depends only on the endpoints of E,  

not the particular path. 

Note that  since ~0(E) is a monomial of degree JEI, it follows that  in an isotropic 

graph, all directed paths from a given vertex to the sink have the same length. 

It  is clear that  every tree T E 7- is isotropic. 

Given any isotropic subgraph S of F, we define the i s o t r o p i c  c lo su re  of S 

to be 

where ~ denotes the common value of ~ ( E )  for all directed paths E in S from 

a to 1. It  is easy to see that  S* is also an isotropic subgraph of F, and that  it 

is maximal with respect to this property. We define S to be the set of all such 

maximal  isotropic graphs, i.e., the closures of all isotropic subgraphs of F. 

We now collect the terms in Theorem 2.3 corresponding to all trees with a 



Vol. 114, 1999 

given isotropic  closure by defining 

P s ( ~ ) ( t ~ , . . .  , t ,~) = 

Ps(R) ( t l , .  . . ,t,~) = 
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l im E fT /hT ,  
t(c~,t3,k)--+tk TET: TCS 

l im E g r f T / h T ,  
t(a,t3,k)--~tk TET: TC_S 

for each S E S.  The  following resul t  shows tha t  bo th  l imits  are nonsingular .  

LEMMA 3.1:  For all S E S,  both Ps(C) and Ps([~) are  rational functions of 

tl ,  • • •, tm with denominator* 

(3.1) r I  (1 - t k w ~ / ~ )  " ~ ,  
c(~,~,k)~S 

where n ~  denotes the number of pairs of directed paths in S from a to 3' and 

to V that intersect only at V, for some vertex V. 

Proof: More generally,  we show tha t  the  resul t  is t rue  if the  numera to r  of the  

t e rm indexed by T (i.e., fT or  gTfT) is replaced by any Lauren t  po lynomia l  PT in 

the  var iables  w ( T 1 ) , . . . ,  w(TN). In any such case, it  is clear t ha t  a denomina to r  

for a sum of t e r m s  pT/hT  can be ob ta ined  by tak ing  the least  common mul t ip le  of 

the  t e rms  hT. Each  factor  appea r ing  in each te rm hT is of the  form 1 - u, where  

u is a Lauren t  monomia l  in the  variables t((~, 13, k) wi th  exponents  0, ±1 .  All  such 

(d is t inc t )  monomia l s  are pairwise  co-prime,  except  for pai rs  of the  form 1 - u, 

1 - u -1.  Note  t h a t  there  is no t e rm hT t ha t  contains  bo th  1 - u and  1 - u -1  as 

factors,  since each factor  involves a monomia l  with exac t ly  one var iable  t ( a ,  ~,  k) 

co r respond ing  to  an  edge not  in T, and  this  var iable  occurs  wi th  a posi t ive  

exponent .  

We c la im tha t  if 1 - u --4 0 in the  l imit  t(c~, ~, k) --+ tk, then  there  is a pa i r ing  

of t rees  T t ha t  have 1 - u as a factor of hT with trees T I t ha t  have 1 - u -1  as 

a factor  of hT, so t h a t  1 - u can be omi t t ed  from a common denomina to r  for 

pT/hT  q- pT' /hT, .  Indeed,  suppose  T C T is a spanning  tree of S such t h a t  hT 

includes the  factor  1 - u .  Thus  u = t(a, ~, k)w(T~)/w(T~) for some (unique) edge 

e (a ,  t3, k) ~ T. Since u --4 1, it  follows tha t  e (a ,  j3, k) E S. Let  T t E T denote  

the  spann ing  t ree  of S ob ta ined  by dele t ing from T the unique edge e (a ,  ~ ,  k ~) 

wi th  ta i l  a ,  and  replac ing  it wi th  the edge e (a ,  ~, k). I t  follows tha t  hT, includes 

the  fac tor  1 - u  -1 = 1 - t ( a , ~ ' , k ' ) w ( T ~ , ) / w ( T ~ ) ,  and  it is not  ha rd  to  see t ha t  

T ~4 T ~ is an involution.  

• In the sense of ratios of Laurent polynomials. 
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We have w(T~) = u. w(T~) or w(T~) = w(T.r) according to whether the unique 

pa th  in T (or equivalently, T ~) from 7 to 1 passes through the vertex c~. Therefore 

PT' Q(1) Q(u) Q(1) - uQ(u) 
( 3 . 2 )  P !  + _ _ -  _ _  + _ _  - 

hT hT, 1 - -  u 1 - -  u - a  1 - -  u 

for some rational function Q(u) tha t  depends on u and the variables t ( - ,  . , - )  

and is nonsingular at u = 1. However Q(1) - uQ(u) --4 0 in the limit u -4 1, so 

1 - u can be omit ted  from a common denominator  for pT/hT + pT,/hT', which 

proves the claim. 

It  follows tha t  a common denominator  for ~ p T / h T  (summed over T E 7- 

with T C_ S) consists of the product  of all distinct expressions of the form 

1 - t (a , /3 ,  k)w(T~)/w(T~) tha t  tend to a nonzero limit as t(a,/3, k) -9 tk (i.e., 

e(c~,/3, k) ~ S). Since T~ and T~ are paths directed towards the root  of a tree, 

they coincide as soon as they reach a common vertex % and w(Tz)/w(T~) de- 

pends only on the parts  of T~ and T~ from c~ and/3 to % Hence there is one such 

expression corresponding to each edge e(a,/3, k) ~ S and each of the n ~  pairs 

of directed paths  in S from a and/3  tha t  are disjoint until they reach a common  

and terminal  vertex V. Each such factor 1 - t(a,/3, k)w(Tz)/w(T~) converges to 

1 - t k ~ z / ~ ,  so in the limit we obtain a rational function of t l , . . . ,  tm with the 

claimed denominator .  II 

By Theorem 2.3 and the previous lemma, we may obtain a denominator  for 

PN by taking the least common  multiple of all expressions of the form (3.1) as 

S ranges over S, together with IJi(1 - ti) N. The denominators  so obtained will 

be far fi'om minimal in general. However, the following pair of results will allow 

us to delete some (but not all) of the unnecessary factors. 

LEMMA 3.2 (cf. the remark prior to Prop.  3.2 in [T2]): The degree of  the pole 

at ti =- 1 in PN(t l , . . . ,  tin) is at most N. 

Proof: It  follows from Theorem 2.2 that  in the limit ti -4 1, 

( 1  - t ~ ) U p ~ ( t ~ , . . . ,  t ~ )  

is a rational function of the remaining variables. II 

Thus  we may disregard all factors of the form 1 - t~ 1 tha t  appear  in (3.1), 

provided tha t  we include (1 - t~) N as a factor of any claimed denomina tor  for 

P N .  

The  following result is Proposi t ion 5.1 of IV]. 
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LEMMA 3.3: PN (t 1 , . . . ,  tin) has a denominator expressible as a product of factors 

of the form 1 - u, where each u is a true monomial (i.e., not Laurent) of degree 

<_ N in the variables t l , . . .  ,tin. 

Thus we may disregard all factors 1 -  t k ~ z / ~  that appear in (3.1) other than 

those for which ~ divides t k ~ ,  or vice-versa. 

4. N u m e r a t o r s  

Let GN(C) and GN(R) denote denominators for PN(C) and PN(R) (respec- 

tively), and let FN (C) and FN (/~) be the corresponding numerators. By Lemma 

3.3, we may assume 

(4.1)  = I I  (1 - 
u C A 4  

where 2~4 is a multiset of monomials of degree < N (depending on the choice of 

or/~) that  is invariant under permutations of the variables t l , . . . ,  t i n .  

LEMMA 4.1: For m, N > 2 but not (m, N) = (2, 2), the numerator 

F N ( t l , .  . . , t i n )  is a polynomial of degree m(d - N 2) that satisfies the functional 

equation 

FN( t11 , . . .  t -1 = t ~N2-dF ~t ,t,~), , m ) (--1)N(m-1)+k-l(tl "'" m) NI, 1,--- 

where d denotes the degree of GN( t l , . . .  , tin) as a polynomial in tl,  and k = IJ~41 
denotes the number of factors appearing in (4.1). 

Proof: For all T C T, the substitutions t(a,  fl, k) -+ 1/ t(a,  ~, k) leave both fT 

and gT invariant, whereas 

hT -+ (--1)N-lhT" 1-I t (a ,~ ,k) .  
e(a,~,k)Cr 

Thus it follows from Theorem 2.3 that 

• N 2 P N ( t l l , . . . , t m  1 ) = ( - 1 ) N ( m - 1 ) - ' ( t l  "'tin) P N ( t l , . . . , t m )  

for both C and/~. (In IT1], Teranishi proves this for C directly from the integral 

representation of Theorem 2.2.) Similarly, it is clear from (4.1) that  

1) = tin) 
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for some monomia l  u. However G N ( t l l , . . .  ,tin 1) and G N ( t l , . . . ,  tin) are bo th  

symmetr ic ,  so u must  be a symmet r ic  monomial ,  i.e., u = ( t l . . .  tin) d. Thus  

follows the claimed functional equat ion for FN. Furthermore,  since the constant  

t e r m  of FN is 1, the s y m m e t r y  implied by the  functional equat ion shows tha t  

+ ( t l  . . .  tm) e (where e = d - N  2) must  be the dominant  t e rm of FN, which proves 

the claimed expression for the degree. | 

In order to de te rmine  explicit formulas for the Poincar~ series PN, our s t ra tegy  

is to first use Theo rem 2.3 and L e m m a  3.1 to obta in  a suitable denomina to r  

GN. We then use Theorem 2.1 to compute  PN through te rms  of degree n = 

[m(d - N2) /2J .  This  requires a calculation involving the irreducible characters  

of the symmet r i c  groups up to degree n for C and degree n + 1 for /~ .  We then  

compu te  FN = GN " PN th rough te rms  of degree n and deduce the remaining  

t e rms  f rom the functional equat ion of L e m m a  4.1. 

5. 2 x 2 M a t r i c e s  

PROPOSITION 5.1: The Poincard series for 2 x 2 matrices have denominators 

G 2 ( C ' ) ( t , , . . .  ,tin) = I - [ (1  -- t i)1-I(1 -- titj), 
i i<_j 

, t , d  = 1-I(1 - t i)  2 I I ( 1  -- t tj). 
i i < j  

Proof: Recall  t ha t  for 2 x 2 matrices,  Theorem 2.3 is valid only for m _> 3. 

However there  is no loss of generali ty in assuming m > 3, since P N ( t l , . . . ,  t i n - l )  

---- P N ( t l , . . . ,  t i n - l ,  0), and the same is t rue  of the claimed denominators .  

The  trees T c T each consist of a single edge e(2, 1, i) for some i (1 < i < m) .  

In par t icular ,  all such trees are maximal ly  isotropic, so S = T.  Ignoring factors 

of 1 - t i  (see L e m m a  3.2), the tree T = {e(2, 1, i)} indexes a t e rm  tha t  contr ibutes  

a ra t ional  function with denomina tor  

= I I ( 1  - t k / t , )  1-I (1  - t ¢k ) ,  
k#i k 

by L e m m a  3.1. We may  disregard 1 - tk/ t i  by L e m m a  3.3, and the remaining  

factors  divide G2(C'), so G2(C) is a denomina tor  for P2(C).  In the case o f /~ ,  

the  factor  1 - t 2 does not  divide G2(/~), however the corresponding numera to r  is 

i T  - =  (1  - t )(1 - i 

Apply ing  L e m m a  4.1, we obta in  the following. 
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COROLLARY 5.2: F o r  m >> 3, w e  have P2 = F 2 / G 2 ,  w h e r e  F2(t l , . . .  , t i n )  iS a 

symmetric polynomial of degree r e ( m -  2) (for C), or r e ( m -  3) (for R). Moreover, 

g2(t l  , . . . ,  t r n )  : (-1)('2")-l(tl ""tm)~F2(t~l ,  . . .  , t-lm ) ,  

where e = m - 2 (for C) or m - 3 (for R). 

COROLLARY 5.3: We have 

1 + tlt2t3 
P2(C)( t l ,  t2, t3) = KL(1 _ ti) [ L < j ( 1  - t i t j ) '  

1 
P2(/~)(t l ,  t2, t3) = 

l-L(1 - ti) 21-Ii<j (1 - t i t j )  

Proof: By Corollary 5.2, the numera tors  for m = 3 have degree 3 (for C') 

and 0 (for/~) .  The  la t ter  immedia te ly  yields F2(/~) = 1. In the former case, it is 

immedia te  from the definition tha t  the linear t e rm of P2 (C') is ~ t~. On the other  

hand,  the linear t e rm of G2((~) is - ~ ti, so the numera to r  has no linear t e rm  

and the remaining t e rms  of F2(~') can be inferred from the functional  equat ion 

of Corol lary 5.2. II 

The  Poincar6 series P2 (6') and P2 (/~) were first de termined explicit ly for m = 2 

by Formanek,  Halpin and Li [FHL], and then m = 4 by Formanek  in [F]. Also 

in [F], Formanek  notes tha t  the Schur function expansion of P N ( t l , . . . ,  tin) only 

involves par t i t ions  with N 2 rows, so in the case N = 2, rn = N 2 = 4 variables 

are sufficient to de termine  the Poincar6 series for all m. 

In fact, we claim tha t  N ( N  - 1) variables are sufficient. By Theo rem 2.2, 

1 
P N ( t l , . . . , t m )  = n (1 ---ti) N " Q N ( t l , . . . , t m ) ,  

where Q N ( Q , . . . ,  tin) denotes  the constant  t e rm in the expansion of 

p(z , , . . .  ,zN) r [  (1 _ z z;ltk) - ,  
~#j,k 

in t e rms  of "rat ional" Schur functions ( z l . . .  ZN) - r s~( z l , . . . ,  zN), and p = 1 (for 

C') or p = ~-~i,j z i z j  I (for /~). It  follows immedia te ly  from the Cauchy identi ty 

(e.g., [M, §I.4]) tha t  the Schur function expansion of Q g ( t l , . . . ,  tin) only involves 

par t i t ions  with at  most  N ( N  - 1) rows. In the case N = 2, this means  tha t  

P2(t l ,  t2) contains sufficient information to de termine  P 2 ( t l , . . . ,  tin) for all m.  
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COROLLARY 5.4: We have 
1 

= ( - 1 )  P 2 ( C ) ( t l , . . . , t m )  H ( l _ - t , )  2 E ~+b 
i a>b>0 

1 
P2( /~ ) ( t l , . . .  ,tin) = H (1 --ti) 2 E S(a'a)(tl'''" ,tin), 

i a>0 

Proof: By Corollary 5.3, we have 

1 
= = ( - 1 )  S(a,b)(tl,t2) , Q2(C)(Q,  t2) (1 + t l ) (1  + t2)(1 - tit2) E ~+b 

a>b>0 
1 

Q2(/~)(tl ,  t2) - 1 - tit--2 - E s(,,~)(tl, t2), 
a>0 

using the fact tha t  S(a,b)(tl,t2 ) = tlt2a b + t~-ltb+l + . . .  + tlt2 a 1 

A determinanta l  formula for P2 ( /~ ) ( t l , . . . ,  tin) has been given by Le Bruyn  [L]. 

Remark  5.5: For all m > 1, the denominator  of minimum degree for 

P2 (~ ' ) (Q , . . .  ,tin) is G2(C ' ) ( t l ; . . .  ,tin). Indeed, if G2 failed to be minimal,  then  

by symmetry,  the numerator  F2 would have to be divisible by one of 1 - t l ,  

1 + t l ,  or 1 - tit2. Furthermore,  since PN( t l , . . . , t k ,O , . . . ,O)  = PN( t l , . . . , t k ) ,  
any divisor of F N ( t l , . . . ,  tm) depending only on t l , .  • •, tk would also be a divisor 

of F N ( t l , . . . ,  tk). However F2((~)(tl,  t2) = 1 (e.g., by Corollary 5.3), so the claim 

follows. Similarly, F2(/~)(tl ,  t2) = 1, so G2( /~) ( t l , . . .  ,tin) is the denominator  of 

nfinimum degree for P2 ( /~ ) ( t l , . . . ,  tin). 

6. 3 × 3 M a t r i c e s  

Let  [u] := 1 - u and [u]n := (1 - u)(1 - u2) --- (1 - u=). 

PROPOSITION 6.1: The Poincard series for 3 × 3 matrices have denominators 

G 3 ( C ) ( t l " ' "  'tin) = H [ti]3 H [titj]2 2 2 H [t, tjtk], 
i i<j i<j<k 

a 3 ( l ~ ) ( t l " " ' t m )  : H [ti][ti]2 H [titj]2[t2tj ][tit2] H [titjtk]" 
i i<j i<j<k 

Proof." Following the technique outlined in Section 3, we first examine the trees 

in T .  The  members  can be grouped into three types: 

A(i, j )  = {e(2, 1, i), e(3, 1, j )} ,  

B(i, j )  = {e(3, 2, i), e(2, 1, j )} ,  and 

C(i , j )  = {e(2,3, i ) ,e(3,  1 , j )} ,  
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where 1 < i , j  < m. Each of these trees is maximally isotropic, so $ = T.  

Since G3(C) and G3(/~) bo th  have zeros of multiplicity 3 at  ti = 1, it follows 

tha t  for each S E 7-, we may disregard all factors in (3.1) of  the form 1 - t~ 1 

(Lemma 3.2). Thus  we need only to examine factors of the form 1 - u ±1 where 

u is a monomial  of degree > 2 (Lemma 3.3). 

In the case S = A( i , j ) ,  the product  of these factors is 

1-[(1 - titk ) (1 - t j tk ). 

This divides bo th  G3(C) and G3(/~) unless i = j .  However in tha t  case, we have 

@($2) = @($3) = ti, so f s  = 0. Tha t  is, the numera tor  for the term indexed by 

S vanishes. 

In the case S = B ( i , j )  or S = C( i , j ) ,  the analogous product  is 

(6.1) H ( 1  - titk)(1 - t j tk)(1 - t i t j tk) .  
k 

Again, this divides both  G3(C) and G3(/~) unless i = j .  In tha t  case, the p roduc t  

includes bo th  (1 - t~2) 2, which divides neither claimed denominator ,  and 1 - t 3, 

which does not divide G3(/~). However, in the case i = j we have @(S3)/ff;(S1) = 
o r  t2 = ~, so the corresponding numerators  f s  and f s  " .0s are 

divisible by a factor of 1 - t 2 tha t  can be canceled from (6.1). Furthermore,  in 

the case of/~,  we may cancel 

.Os = (1 + t i + t2)(1 + l i t  i + 1/t2), 

against  the factor  1 - t  3 appear ing in (6.1), leaving a factor 1 - t i  whose multiplicity 

is controlled by L e m m a  3.2. | 

Using L e m m a  4.1, we may deduce the degrees of the corresponding numerators .  

COROLLARY 6.2: For m > 2, we have P3 = Fa/G3, where F 3 ( t l , . . .  ,tin) is a 

symmetr ic  polynomial of degree era, and e = (m 2 + 7m - 14)/2 (for C), or 

e = + - 1 8 ) / 2  (for R). Moreover, 

Fa(t l , .  • . , t in)  = (-1)( '~)  (tl "" tm)eFa( t~ l ,  .. •, t-lm ). 

Note tha t  F3 (/~) has degree 0 when m = 2, so we immediately obtain  
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COROLLARY 6.3: We have 
1 

P3(/~)(tl ,  t2) = 
[tl]2[t~][t2]2[t2l[tlt212[t2t2l[tlt2] " 

Similarly, F3 (C') has degree 4 when m = 2, and hence can be computed  using 

S~ characters  with n _< 2. For this it is convenient to subst i tu te  ti -+ tiq so tha t  

the variable q records total  degree. From the definition of 0~ ~) in Section 2, it is 

clear t ha t  0~ 1) is the tr ivial  character  of $1 and 0~ 2) is twice the trivial  charac ter  

of $2, so Theo rem 2.1 implies 

P3(C)( t lq ,  t2q) = 1 + s l ( t l , t 2 )q  + 2s2( t l , t2)q  2 + O(q 3) 

= 1 + (tl + t2)q + (2tl 2 + 2tit2 + 2t~)q 2 + O(q3). 

From the definition of Ga(6 ' ) ,  we have 

G3(C)(tlq, t2q) = 1 - (tl + t2)q - (t~ + tit2 + t~)q 2 + o(qa) ,  

and hence 

F3(C)( t lq ,  t2q) = G3(C)( t lq ,  t2q)" P2(C)( t lq ,  t2q) = 1 - t l t2q 2 + O(q3). 

Combining  this with the functional equat ion of Corollary 6.2 yields 

COROLLARY 6.4 (Teranishi [T1]): We have 
2 2  1 - t i t 2  +t i t2  

P3(C)(tl , t2) = [tl]a[t213[tlt2] 2[t~t2][t~t~]" 
In  the ease m = 3, the Poinear6 series have numera tors  of degree 24 (for C) 

and 18 (for /~), so we need the te rms  of degree 12 and 9 in order to make full 

use of the functional  equation. This  is too large to be  done by hand,  but  the 

compu ta t i on  can be done easily with SF,* the second au thor ' s  Maple  package for 

symmet r i c  functions IS]. The  results are as follows. 

PROPOSITION 6.5: We have 

F3(R) ( t l ,  t2, t3) = (1 + e3)(1 + e3 -I- ele3 - e2e3 -- ele2e3 -~ e 2 -- e2e3 --~ el e2 

~ - e 2 4  + e , e ~ 4  - 4 + ~ e ~  - ~2e~ - e 4 - 4 ) ,  + e le  3 

- -  e2e2e3 -F 2e2e3 2 + e le  3 -t- e2e 3 - ele2e 3 

+ 2 ~ 4  ~ ~ ~ ~ ~-2e~4 ~ e~44 - -  e2e 3 + e le  3 -4- 2ele2e 3 -- e le  3 -t- 

_~.e2e3 4 __ e2e33 3 _ 2 e 2 e 3  4 _ e l e 3 2  5 7t _e le2e32  4 _ ~ . 2 e l e 2 e 5  _ e 6 _ e 2 e 3 2  5 

+e~4 e ~ 4 -  ~ e14 ~ --  e l e  3 - -  e 7 --I- - -  3~ 

where el ,  e2, e3 denote  the e lementary  s ymmet r i c  functions of  t l  , t2, t3. 

* Freely available at h t t p  ://www. math .  l s a .  umich,  edu /~ j  r s / m a p l e ,  h tml  
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Remark  6.6: By reasoning similar to Remark 5.5, it follows tha t  for all m > 1, 

the denominator  of minimum degree for P 3 ( C ) ( t l , . . . ,  tm) is G 3 ( C ) ( t l , . . . ,  tm). 
Indeed, since F3(C)(t~,t2) and G3(C)( t l ,  t2) are relatively prime, this could fail 

only if F3(C')(t l ,  t2, t3) were divisible by 1 - t l t 2 t 3  = 1 - e 3 -  However, one can use 

Proposi t ion 6.5 to check that  F3(C)( t l ,  t2, t3) = 2(c 3 - e  3) rood 1 - e 3 .  Similarly, 

we have F3(R)(tl,t2) = 1 and F3(f~)(tl,t2,t3) = 2(el - e2)(3 + el + e2) mod 

1 - e 3 .  Therefore  G 3 ( R ) ( t l , . . . ,  tin) is the denominator  of minimum degree for 

P3([t)(t l , . . .  ,tm). 

7. 4 x 4 M a t r i c e s  

THEOREM 7.1: The Poincard series for 4 x 4 matrices have denominators 

G4(C)( t l , . . . , tm)  I I [ t i ] 4 I I  2 22  2 2 22[t3tj][tit3 ] = [titj] It itj][t itj] [titj] 
i i<j 

I I  [titjtkl2[t2tjtkl[tit~tk][titj t2k] I I  [titjtkh], 
i < j < k  i < j < k < l  

2 2 2  2 2 2 2  3 3 G 4 ( R ) ( t l , . . . ,  tin) = n [til[ti]3 n [titj] [titjl[titj] [titj] [titj][titj] 
i i< j  

I I  [titjtk]2[t2itjtkl[tit2tkl[titj t2] l-I [titjtkh]. 
i < j < k  i < j < k < l  

Proof'. We will first prove tha t  

G4(C) :-- G4(C') • I I ( 1  + ti) I I ( 1  - titj) 3, 
i ~<j 

G4(/t)  := G4(/~) • I I ( 1  + ti) 2 1-I(1 - t~ty) a 
i i< j  

are denominators  for P4(C) and P4(/~). A more delicate argument  will then be 

used to el iminate the "extra" factors. 

Consider representatives of the four isomorphism classes of rooted trees in 7-, 

say 

A(il,i2,i3) = {e(2, 1,il),e(3, 1,i2),e(4,  1,i3)}, 

B(il,i2,i3) = {e(2, 1,il),e(3,2, i2),e(4,2, i3)}, 

C(il,i2,i3) = {e(2, 1,i1), e(3, 1,i2), e(4, 2, i3)}, 

D(il,i2,i3) = {e(2, 1,il),e(3,2,i2),e(4,3,i3)}, 

where 1 < il ,  i2, ia _< m. The  remaining members of 7- are obtained from these 

by permut ing  the vertices 2, 3 and 4. The  only members  of this list tha t  are 
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not  maximal ly  isotropic are the trees of the form C( i , i , j )  and C( i , j , j ) ;  their 

isotropic closures are 

C*(i, i , j )  = {e(2, 1, i), e(3, 1, i), e(4, 2 , j ) ,  e(4, 3, j )} ,  

C*( i , j , j )  = {e(2, 1, i) ,e(3,  1, j ) ,e (4 ,2 , j ) ,e (4 ,3 ,  i)}. 

In the case S = A(il , i2 , i3) ,  the product  of all factors in (3.1) of the form 

1 - u +1 with u a monomial  of degree > 2 is 

iI(1 - t~tk)(1 - t~2tk)(1 - ti3tk). 
k 

If  i l , i2 , i3  are distinct, this clearly divides both  G4(C) and G4(R). Otherwise, 

if (say) il = i2 = i, then ~($2)  -- ~($3) = ti, s o / 8  = 0, i.e., the corresponding 

numerators  vanish in bo th  the C a n d / ~  cases. 

In the case S = B(i l ,  i2, i3), the relevant product  is 

(7.1) H(1 - t ,tk)(1 - t~tk)(1 - t~3tk)(1 - t~ti2tk)(1 - ti~ti3tk), 
k 

which divides G4(C) unless il = i2 = i3, and divides G4(/~) unless i1,i2,i3 are 

not distinct.  However if i2 = i3, then ~($3) = ~($4)  a n d / s  = 0, so again bo th  

numerators  vanish. If  il = i2 = i, then (7.1) includes a factor (1 - t2) 2 tha t  

fails to divide G4(/~). However in tha t  case, ~($3) /~($1)  = t 2, so the numera tor  

includes a factor  1 - t 2 tha t  can be canceled against it. 

In the case S = C(il ,  i2, i3) with i2 ~ {il, i3} (so that  S is maximally isotropic), 

the relevant p roduc t  is 

(7.2) (1  - ti, t i 3 ) I ] (1  - t~ltk)(1 - tz2tk)(1 - t~3tk)(1 -- ti, ti3tk). 
k 

The factor 1 - tilti3 corresponds to the choice of e(3, 4, i2) in (3.1). Indeed, each 

edge of the form e(3,4, k) contributes the factor 1 - u ,  where u = tktilt~3/t~2. 
However u ±1 is not a monomial  unless k -- i2. It is easy to check tha t  (7.2) 

divides bo th  G4(C) and Ga(/~) unless il = i3 = i for some i. In tha t  case, 

(1  - t 2 )  3 divides (7.2), whereas G4(C) is only divisible by (1 - t 2 )  2 and G4(/t)  by 

1 - t 2. However ~(S4) /w(S1)  = t 2, s o / s  includes (1 - t2)(1 - 1/t 2) as a factor  

tha t  can be canceled against (7.2). 

In  the case S = C*(i , i , j ) ,  note tha t  there are two trees T E 7- tha t  are 

subgraphs  of S, and hence Ps is (a limit of) a sum of two rational functions of the 
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form f T / h T  (for C) or fT gT /hT  (for /~). However the numera tors  corresponding 

to bo th  trees have a common  factor  1 - t ( 2 ,  1,i)/t(3,  1,i) tha t  vanishes in the  

l imit  t(a, ~, k) --+ tk, so S contr ibutes  nothing to ei ther Poincar~ series. 

In the case S = C*( i , j , j ) ,  we may  assume i ~ j ;  otherwise we are in the 

previous case. Since nl,4 = 2, it follows tha t  the produc t  of all factors in (3.1) of 

the form 1 - u +1 with  u a monomia l  of degree > 2 is 

I I ( 1  - t i t k ) 3 ( 1  - t j t k ) 3 ( 1  - t~tjtk) 2. 
k 

This  divides bo th  G4(C) and G4(/~), but  not  G4(C ) and G4(/~). The  failures are 

caused by the  presence of the factors (1 - titj) 6 and (1 - t/2)3(1 - -  tj)2 3. 
In the case S = D(il ,  i2, i3), the relevant product  is 

( 7 . 3 )  a.H(1--ti~tk)(1--ti~tk)(1--t~3tk)(1--ti~ti~tk)(1--ti~ti3tk)(1--ti~ti~t~3tk),  
k 

where a denotes  the  p roduc t  of all distinct expressions of the form 

1 - t i l t i 2  ~ 1 - -  t i 2 t i 3 ~  1 - -  t i l t i 3 ~  

corresponding  to the factors in (3.1) indexed by the edges e(4, 1, k) (k = i3, i2, i l ) .  

If  i l ,  i2, i3 are dist inct ,  then  it is not hard  to check tha t  (7.3) divides G4(C)  and  

G4(/~). If i l  = i2 = i3 --= i for some i, then (7.3) simplifies to 

(1  - t~) r i ( 1  - titk)3(1 - t~tk)2(1 - t3tk), 
k 

which fails to divide bo th  G4(C)  and G4(/~). However ~ (S~)  = t~ -1 (1 < a < 4), 

so 

i s  = (1 - ti)3(1 - 1/t i)3(1 - t2)2(1 - 1/t2)2(1 - t3)(1 - 1/t~), 

gs  = (1 + ti)(1 + 1/t i)(1 + t~)(1 + 1/t~). 

W h e n  these are canceled against  (7.3), the results divide G4(C) a n d  G 4 ( R ) .  

Cont inuing the  hypothesis  tha t  S = D(il ,  i2,i3), consider the possibil i ty t ha t  

i l  = i2 = i and  i3 = j ,  or i l  = j and  i2 = i3 = i, for some i ~ j .  In  this case, 

(7.3) simplifies to 

(7.4) (1 - t~)(1 - t~tj) I-[(1 - titk)2(1 - tjtk)(1 -- t2tk)(1 -- t i t j tk)(1 -- t2tjtk). 
k 
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This is divisible by (1 - t~) 3 and (1 - t i t j)  5, so it fails to divide both  G4(C) and 

G4(/~). However f s  includes the factors ( 1 - t 2 ) ( 1 - 1 / t  2) and ( 1 - t i t j ) ( 1 - 1 / t i t j ) .  

When  these are canceled against (7.4), the results do divide G4(C) and G4(/~). 

On the other  hand, if il  = i3 = i and i2 = j ,  then (7.4) should be modified by 
2 replacing 1 - t ~ t  k with a second copy of 1 - t i t j t k .  Again, the factors ( 1 - t 2 )  3 and 

(1 - t ~ t j )  5 are the only obstructions to divisibility, and again the corresponding 

numerators  include factors of the form (1 - t ~ t j ) ( 1  - 1/ t i t j )  (in fact, the square 

of such a factor appears).  However in the case of 6', the numerators  have no 

factors of the form 1 - t 2 or 1 + ti. Thus the remaining par t  of (7.4) divides 

G4(C) l-[k(1 + tk), but  not necessarily G4(C'). On the other hand, 

gs = (1 + ti)(1 + 1/ti)(1 + t i t j )(1 + 1/t~tj), 

so the remaining par t  of (7.4) does divide G4(/~). 

The  preceding argument  shows that  G4(C) and G4(R)  are common denomina- 

tors for each of the rational functions tha t  appear  in the expansions of P4(C) and 

P4(/~)- Moreover, the only terms tha t  G4(C) and G4(/~) fail to "denominate" are 

those indexed by the graphs isomorphic to C* (i, j ,  j )  (in bo th  cases) or D(i ,  j ,  i) 

(in the case of C), for some i ~ j .  

Henceforth,  let us fix i ~ j ,  S = C * ( i , j , j ) ,  and T = D ( i , j , i ) .  To finish, it 

suffices to  prove the following. 

(a) Ps(/~) has a pole at  ti = - 1  of multiplicity at most one. 

(b) Ps(/~) and Ps(C') have denominators  tha t  are not divisible by (1 - t i t j )  4. 

(c) Ps(C')  + PT(C)  has a pole at ti = - 1  of multiplicity at most two. 

To prove (a), let T '  = C ( i , j , j )  and T"  denote the two spanning trees of S 

in T .  Recall from the proof  of Lemma 3.1 (see (3.2)) tha t  there  is a rat ional  

funct ion of the variables u = t(4, 3, i)t(3, 1, j ) / t (4 ,  2, j ) t (2 ,  1, i) and t (a ,  ~, k), say 

Q(u),  such tha t  

gT' fT '  _ Q(1) and gT" fT"  _ Q(u)  _ - u Q ( u )  
hT, 1 -- u '  hT,, 1 -- u -1 1 -- u 

Furthermore ,  Q(u)  is nonsingular in the limit u ~ 1. It follows tha t  

Ps(/~) = lim Q(1) - uQ(u)  _ (~(1) + (~'(1), 
t ( ~ , ~ , k ) - + t k  1 - -  t~ 

u - - ~ l  

t reat ing u as an independent  variable. It is easy to check tha t  hT, / (1  -- u) has 

a zero at  ti = - 1  of multiplicity two in the limit t (a ,  fl, k) -+ tk. Similarly, the 

numera tor  includes 

.0T' = (1 + *i)(1 + t j ) .  (1 + 1/t i)(1 + 1 / t j ) ,  
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so Q(1) is nonsingular in the limit ti --+ -1 .  Furthermore, by logarithmic differ- 

entiation we may write Q'(1) /Q(1)  as a linear combination of terms of the form 

F'(1)/F(1),  where F(u) ranges over the factors appearing in the numerator  and 

denominator of Q(u). However, each such factor F(u) has the property that  F(1) 

has at most a simple zero at ti = - 1 ,  so Q'(1) must have at most a simple pole 

at ti = - 1 .  

Similarly, to prove (b) for/#, one can check that  in Q(u) there are two factors in 

the numerator  and four factors in the denominator that  are divisible by 1 - t i t y  in 

the limit u --+ 1, t (a ,  13, k) --+ tk. In Q(u), these factors are (1 -u t i t j ) (1  - 1/utitj) 
in the numerator  and (1 - t i t j ) 2 ( 1  -u t i t j )  2 in the denominator. Hence Q(1) and 

Q'(1) both have denominators in which 1 -  titj occurs with multiplicity at most 2. 

Essentially the same argument applies in the case of C as well. 

To prove (c), it suffices to show that  

(7.5) lim (1 + ti)3pT(C) = - lim (1 + ti)3ps(C), 
tl--+-- I ti--+-- i 

since we have already shown that  Ps(C)  and PT(C) both have poles of order at 

most 3 at t~ = - 1 .  From the definition, we obtain 

[ti] ~[1/t~]2 [tj][1/tj][titj]2[1/titj]2 [t2tj][1/t~tj] 

PT = I]k[titk] 2[tjtk][titjtk] 2[t~tjtk][tk/tdj] 2[tk/t~tj] I-Ik#i[tk/ti] 2 I]k#j[tk/tJ]" 

Taking into account the vanishing factors [t212[1/t2] it follows that  L i l  t / i l '  

1 
• 1 H [tk/tj]2" (7.6) t,fim (1 + ti)apT = --2. ke,H [_tkl4[tjtkl2[_t~tkl2[_tk/tjl 2 k¢,,~ 

To compute the analogous limit for Ps,  note that  by reasoning similar to (a), we 

have 

Ps(O) = 2(1) + 2 ' (1) ,  

where Z(u) is the rational function of u and t(a ,  ~, k) such that  

f T '  _ Z(1) and f T "  _ Z(u) 
hT, 1 -- u'  hT,, 1 -- u-1 '  

and u , T ' , T "  are as defined above. Since 2(1) has a pole of order 2 at ti -- - 1 ,  

it contributes nothing to the coefficient of (1 + ti) -3 in the Laurent expansion 

of Ps.  Furthermore, by logarithmic differentiation it follows that  2 ' (1)  is 2(1) 

times a linear combination of expressions of the form F ' (1 ) /F (1 ) ,  where F(u) 
ranges over the factors appearing in the numerator and denominator of Z(u). 
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There  is exact ly one factor, namely, F(u) = 1 - ut~ such that  F ' (1)  ¢ 0 and 

F(1)  vanishes at ti = - 1 ,  and it appears in the denominator .  Hence this is the 

unique factor such tha t  F' (1 ) /F(1)  is singular at ti = - 1 ,  it has a residue of 

- 1 / 2 ,  and (as a factor of the denominator)  it occurs with coefficient - 1 .  Thus  

lim (1 + t i )3ps(C)  = (1 /2) t  lim_l(1 + t~)22(1). 
ti--4"-- I i -- 

Since Z(1) = (1 - U)fT, /hT, ,  we find 

2(1) = [td2[1/td2 [tj]2[1/tj]~[titj][1/titj][t~/tj][tj/td 
1-Ik[titk] 2[tjtk] 2[titjtk][tk/titj][tktj/ti][tkti/tj] 1-Ikei[tk/ti] 2 [ I k e j  [tk/tj] 2' 

and therefore 
1 1 

t~-+-llim (1 + ti)2Z(1) = 4.  k¢iH [_tk]4[tjtk]2[_tjtk]2[_tk/tjl  2 k¢i,jH [tk/tj]2" 

Compar ing  this with (7.6), we obtain (7.5). | 

Again via Lemma 4.1, we obtain the following. 

COROLLARY 7.2: For m > 2, we have P4 = F4/G4, where F 4 ( t l , . . . , t m )  is a 
symmetr ic  polynomial  of  degree ern, and e = (~31) + 6 ( ~  -~-) + 14(m - 1) - 6 

(for C'), or e = ('~31) + 6(m2 a) + 14(m - 1) - 9 (for [~). Moreover, 

. .  ~ . .  t - 1  F4( t l , .  ,tin) ( - - 1 ) k - l ( t l " " t m ) e F 4 ( t 1 1 ,  " , m ), 

where k : C)  + C)  + (4 )  

In part icular ,  F4(C')(tl ,  t2) and F4(R)( t l , t2)  have degrees 16 and 10 and can 

be de termined  by a Maple computa t ion  of their terms of degree < 8 and < 5 

(respectively) via Theorem 2.1. The  results are as follows. 

PROPOSITION 7.3: We have 

P4(C') ( t l ,  t2) 
~ 2 , 2 , 2  eltalt~ - -  4 4 6 6 ( 1  - t i t2 + t~t~)(1 - el t l t2 + elt~l t2 + t:lVlb 2 -]- el t l t2  + ti t2) 

[tl]4[t214[tlt212[tlt~]2[t2t212[tlt32] [tlt2][tlt2]3 2 2 
1 22  23  3 2  3 3  5 5  

-F $1t2 ~- tlt2 -~ tl t2 -}- t l t  2 + t l t  2 
2 22 2 2 3 3 2 2 ,  

where el -- t l  + t 2 .  

We remark  tha t  Teranishi calculated P4(C)( t l , t2)  in [W2] (Theorem 4.1), 

a l though with a denominator  tha t  is a multiple of the one we use here. There  are 

also typographical  errors in the numerator  (for example,  the formula as printed 

is not  symmetr ic) .  

We conclude with two conjectures. 
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CONJECTURE 7.4: G4(C) and (]4(/~) are the denominators of min imum degree 

for P4(¢)  and P4(R). 

Since F4(tl ,  t2) and G4(tl,  t2) are relatively prime (for both C and/~),  it follows 

that  this conjecture could fail only if 1 - t l t 2 t 3  or 1 -t21t2t3 divides F4(tl,  t2, t3), 

or 1 - tlt2t3t4 divides F 4 ( t l , . . . ,  t4). 

For all N > 1, let D y ( t l , . . . ,  tin) denote the denominator of minimum degree 

for the Poincar~ series of either 6' or/~.  

CONJECTURE 7.5: We have 

(a) O N ( t 1 , . . . ,  tin) = ( l - - u 1 ) " - ( 1 - - U k ) ,  where each ui is a monomial of degree 

< N .  

(b) D g ( t l , . . .  , tin,0) = D N ( t l , . . .  ,tin). 
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