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ABSTRACT
We determine explicit denominators for the Poincaré series of (a) the
invariants of m generic N X N matrices, and (b) the ring generated by
m generic N x N matrices and their traces, for N < 4. For N < 3 we
prove (and for N = 4 we conjecture) that the denominators we obtain are
of minimum degree. We also give explicit rational fractions for both series
for small values of m and N.

1. Introduction

In this paper we investigate the Poincaré series for the ring of invariants of an
m-tuple of N x N matrices (N < 4) using results of Van den Bergh [V]. There
are a number of equivalent ways to define this series; the one we prefer uses
generic matrices. Let F' be a field of characteristic 0, and let X;,...,X,, be
N x N matrices whose entries are independent indeterminates in some commuta-
tive F-algebra. Let R be the F-algebra generated by X1, ..., X, C the algebra
generated by traces of elements of R, and R the algebra generated by R and C,
regarding the members of C as scalars. Each of the rings R, C and R has an
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m-fold grading by multidegree, and so each has a (symmetric) Poincaré series in
the variables t,...,t,.

Our interest in this paper will be in the Poincaré series of C and R, both of
which are known to be rational functions. We determine explicit denominators
for both series for N < 4 and all m, and for N < 3 prove that these are the
denominators of minimum degree. For example, in the case of 3 x 3 matrices,
the denominator of minimum degree for the Poincaré series of C is

[a -ty -t —e) [J( - tat)* @ - fe,) (1 —82d) [ (O —tatstn),

i i<j 1<j<k
and for the Poincaré series of R it is

[Ta -t - —tat)* (1 — ) (1 = ,83) T (1 - tatst)-

i i<j i<j<k

In the case N = 4, the denominators we obtain are minimal for m = 2, and we
conjecture this to be true for all m. We also determine explicit rational fractions
for both series in the cases (m,N) = (2,3), (3,3), and (2,4). The series for C
in the cases (m,N) = (2,3) and (2,4) were first obtained by Teranishi in [T1]
and [T2], although the latter appears with typographical errors.

2. Three formulas

Let Pn(C)(t1,---,tm) and Py(R)(t1,...,tx) denote the Poincaré series of m
generic N x N matrices with trace, as above. In statements that apply to both
series, we will simply write Py. In this section we present three formulas for
Pn(C) and Py (R) from the literature. The first two can be found in Section 6
of [F] (an excellent introduction to the subject) and are based on Procesi’s work
in [P]. The third is due to Van den Bergh and is derived from the second using
graph theory.

Let A denote a partition of an integer n, x* the corresponding irreducible
Sp-character, and sy(t1,...,tn) the corresponding Schur function. We use Fr to
denote the Frobenius homomorphism, i.e., the linear map from S,-characters to
homogeneous symmetric polynomials of degree n in which Fr(x*)=sx(t1, .. ., tm)-
Define an S,,-character

o= Y xext
p={1. 2, BN
where the sum ranges over partitions of n with at most N parts, and the tensor
denotes pointwise product (i.e., the operation corresponding to tensor products
of S,-modules).
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THEOREM 2.1: We have

PN (C)(t1, - tm) = 3 Fr(0) (11, tm),
n>0

Pr(R)(t, .- tm) = 3 Fr(05 s )t tm).
n>0

Both series are also expressible as integrals over the torus
{(21,...,28) € CN 1 |z| = 1}

with respect to Haar measure dv = (2my/—1)"N(z;---2y)"ldz1 A --- Adzy as
follows.

THEOREM 2.2: If [t;| < 1,...,|tm| < 1, then we have

1 Hz;é](l ZZZ] 1)

pN(C)(tl,...,tm):‘m I, .k(l_z,z.‘lt )dy’
7]
i 1 [ Iy

. i3,k k .5

The third theorem is the main tool of this paper. It is based on Theorem 2.2
and expresses Py as the limit of an explicit but complicated sum of rational
functions. To describe this sum, define I" to be the directed graph with vertices
{1,...,N} and edges e(e, 8,k) (1 < a # B < N, 1<k < m) directed from «
to 5. Let T denote the set of spanning trees of I' such that every vertex has a
directed path in the tree to vertex 1.

Choose indeterminates t(a, 8, k) for each edge e(a, 3,k) and, for any subset
E of the edge set of I', define w(F) to be the product of t{c,8,k) over all
e(a,B,k) € E.

For each tree T' € T, let T, denote the set of edges in the (unique) path in T
from vertex « to vertex 1, and define

fr= [0 -w(@)/w(T2), gr= Zw ) Hw(T),

a#p a
he= I (-t B,kw(Ts)/w(T.)).

e(a,B,k)¢T

Here then is Van den Bergh’s result (see Theorem 5.5 of [V]):
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THEOREM 2.3: For m, N > 2 but not (m,N) = (2,2), we have

- 1 1
P tHyoostm) = — | [ ———= i hr,
(O, - tm) N!H l_ti)N t(a,ﬁl,g—*tkTZTfT/ '

Pn(R)(t1,. .. tm) N'H l—t : ﬂk)_)t ZngT/hT-

When m = N = 2, the formula for Py(C) is valid, but the one for Py (R)
is not.

3. Denominators

The use of Theorem 2.3 is complicated by the fact that the individual summands
fr/hr and grfr/hr may be singular in the limit ¢(a, 3, k) — t;. However, we
shall see that it is possible to partition 7 into small equivalence classes so that
the sum of the terms indexed by each equivalence class has a nonsingular limit.

We adopt the convention that if f is any rational function of the variables
t(a, B, k), then f shall denote the limit of f as t(a, 3,k) — tx (assuming this
limit exists). In particular, if E is a subset of the edge set of I', then w{FE) is the
product of tx as e(a, 3, k) ranges over E.

We say that a subgraph S of I is isotropic if

(1) There are no directed cycles in S.

(2) Vertex 1 is the unique sink of S.

(3) For every directed path F in S, w(FE) depends only on the endpoints of F,

not the particular path.

Note that since w(E) is a monomial of degree |F|, it follows that in an isotropic
graph, all directed paths from a given vertex to the sink have the same length.

It is clear that every tree T' € T is isotropic.

Given any isotropic subgraph S of I', we define the isotropic closure of S
to be

S* = {e(a, B, k) € I': wo = txwg},

where W, denotes the common value of w(E) for all directed paths E in § from
a to 1. It is easy to see that S* is also an isotropic subgraph of I", and that it
is maximal with respect to this property. We define S to be the set of all such
maximal isotropic graphs, i.e., the closures of all isotropic subgraphs of T.

We now collect the terms in Theorem 2.3 corresponding to all trees with a
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given isotropic closure by defining

PS(C)(tl,...,tm) = lim Z fT/hT,

t(a,B,k)—tx TeT-TCS

RYt1, ... tm) = i hr,
Ps(R)(ty,---,tm) ‘("’Bl’g)l_’t"Teer-;cngfT/ T

for each S € §. The following result shows that both limits are nonsingular.

LEMMA 3.1: For all S € S, both Ps(C) and Ps(R) are rational functions of
t1,-..,tm with denominator*

(3.1) I (-tuwg/wa)™>,

e(a,B,k)¢S

where nqp denotes the number of pairs of directed paths in S from a to v and
to v that intersect only at -y, for some vertex 7.

Proof: More generally, we show that the result is true if the numerator of the
term indexed by T (i.e., fr or gr fr) is replaced by any Laurent polynomial pr in
the variables w(7T1),...,w(Tn). In any such case, it is clear that a denominator
for a sum of terms pr/hr can be obtained by taking the least common multiple of
the terms hr. Each factor appearing in each term hr is of the form 1 — u, where
u is a Laurent monomial in the variables ¢{a, 3, k) with exponents 0, £1. All such
(distinct) monomials are pairwise co-prime, except for pairs of the form 1 — u,
1 —«~!. Note that there is no term hp that contains both 1 —% and 1 —u~1 as
factors, since each factor involves a monomial with exactly one variable t(a, 3, k)
corresponding to an edge not in T, and this variable occurs with a positive
exponent.

We claim that if 1 — » — 0 in the limit ¢(e, 3, k) — tz, then there is a pairing
of trees T that have 1 — « as a factor of hy with trees 7" that have 1 — u~! as
a factor of hys so that 1 — u can be omitted from a common denominator for
pr/hr + pr:/hr:. Indeed, suppose T' € T is a spanning tree of S such that hr
includes the factor 1—u. Thus u = t(a, 8, k)w(Ts)/w(T,) for some (unique) edge
e(a,B8,k) ¢ T. Since u — 1, it follows that e(a,8,k) € S. Let TV € T denote
the spanning tree of S obtained by deleting from T' the unique edge e(a, 3, k)
with tail o, and replacing it with the edge e(w, 8, k). It follows that k7 includes
the factor 1 —u™! =1~ t(a, 8, k" )w(Ts ) /w(T%), and it is not hard to see that
T +— T’ is an involution.

* In the sense of ratios of Laurent polynomials.
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We have w(T))) = u-w(T,) or w(T) = w(T,) according to whether the unique
path in T (or equivalently, ') from <y to 1 passes through the vertex a. Therefore

pr P _ QW) | QW) _ QW) -uQ)

3.2 — 4+ =
( ) hT th 1—u 1—u-? 1—u

for some rational function @(u) that depends on u and the variables t(-, -, -)
and is nonsingular at u = 1. However Q(1) — uQ(u) — 0 in the limit u — 1, so
1 — u can be omitted from a common denominator for pr/hr + pr+/hrs, which
proves the claim.

It follows that a common denominator for > pr/hr (summed over T € T
with T C S) consists of the product of all distinct expressions of the form
1 —t(a, B, k)w(Tp)/w(T,) that tend to a nonzero limit as t(c, B, k) — tx (i.e.,
e(a, B,k) ¢ S). Since T,, and Ty are paths directed towards the root of a tree,
they coincide as soon as they reach a common vertex v, and w(Tg)/w(T,) de-
pends only on the parts of T, and Ty from « and g to y. Hence there is one such
expression corresponding to each edge e{c, 5,k) ¢ S and each of the nqp pairs
of directed paths in S from « and § that are disjoint until they reach a common
and terminal vertex . Each such factor 1 — t(a, 8, k)w(Ts)/w(Ts) converges to
1 — t4Wa/Wq, so in the limit we obtain a rational function of ¢;,...,¢,, with the
claimed denominator. ]

By Theorem 2.3 and the previous lemma, we may obtain a denominator for
Py by taking the least common multiple of all expressions of the form (3.1) as
S ranges over S, together with [],(1 — ¢;)"¥. The denominators so obtained will
be far from minimal in general. However, the following pair of results will allow
us to delete some (but not all) of the unnecessary factors.

LEMMA 3.2 (cf. the remark prior to Prop. 3.2 in [T2]): The degree of the pole
att; =1 in Py(t1,...,ty) is at most N.

Proof: It follows from Theorem 2.2 that in the limit £; — 1,
(1= t)NPy(ty, .. tm)

is a rational function of the remaining variables. ]

Thus we may disregard all factors of the form 1 — ¢! that appear in (3.1),
provided that we include (1 — #;)" as a factor of any claimed denominator for
Pn.

The following result is Proposition 5.1 of [V].
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LEMMA 3.3: Pn(t1,...,tn) has a denominator expressible as a product of factors
of the form 1 — u, where each u is a true monomial (i.e., not Laurent) of degree
< N in the variables t,...,t,.

Thus we may disregard all factors 1 —t,wg/wW, that appear in (3.1) other than
those for which w, divides {xwg, or vice-versa.

4. Numerators

Let Gn(C) and Gn(R) denote denominators for Py(C) and Py(R) (respec-

tively), and let Fiy(C) and Fy(R) be the corresponding numerators. By Lemma
3.3, we may assume

(4.1) Gnlts,tm) = [J (1 —w)

ueEM

where M is a multiset of monomials of degree < N (depending on the choice of
C or R) that is invariant under permutations of the variables ty,...,%,.

LEMMA 4.1: For m,N > 2 but not (m,N) = (2,2), the numerator
Fn(t1,...,tm) is a polynomial of degree m(d — N?) that satisfies the functional
equation

—_ p— a— p— 2_
Fn(rh o t7h) = ()N g AN EN (),

where d denotes the degree of Gn(t1,...,tm) as a polynomial in t1, and k = | M|
denotes the number of factors appearing in (4.1).

Proof: For all T € T, the substitutions (e, 8, k) — 1/t(e, 8, k) leave both fr
and gr invariant, whereas
hr = (-)N"'he- [ e B,k).

e(a,B3,k)er

Thus it follows from Theorem 2.3 that
PN(tl_lv s atn_v.l) = (—1)N(m_l)_1(t1 e tm)szN(tla s atm)

for both C and R. (In [T1], Teranishi proves this for C directly from the integral
representation of Theorem 2.2.} Similarly, it is clear from (4.1) that

GN(tl_lv s 7tr—nl) = (_1)ku—1GN(t17 s 7tm)
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for some monomial u. However Gu(t7!,...,t7!) and Gu(t1,...,tm) are both
symmetric, so u© must be a symmetric monomial7 ie, u = (t; - tm)? Thus
follows the claimed functional equation for Fy. Furthermore, since the constant
term of Fiy is 1, the symmetry implied by the functional equation shows that
+(ty - tm)¢ (Where e = d— N?) must be the dominant term of Fiy, which proves

the clalmed expression for the degree. ]

In order to determine explicit formulas for the Poincaré series Py, our strategy
is to first use Theorem 2.3 and Lemma 3.1 to obtain a suitable denominator
Gyn. We then use Theorem 2.1 to compute Py through terms of degree n =
|m(d — N?)/2]. This requires a calculation involving the irreducible characters
of the symmetric groups up to degree n for C and degree n + 1 for R. We then
compute Fy = Gy - Py through terms of degree n and deduce the remaining
terms from the functional equation of Lemma 4.1.

5. 2 x 2 Matrices

PROPOSITION 5.1: The Poincaré series for 2 x 2 matrices have denominators

GQ(C)(th )t ) H 1—t H(l—tt

i<y
Ga(R)(t1, .. tm H(l—t)2H (1 —tit;)
i<y
Proof: Recall that for 2 x 2 matrices, Theorem 2.3 is valid only for m > 3.
However there is no loss of generality in assuming m > 3, since Py (t1,...,tm—1)
= Pn(t1,--.,tm—1,0), and the same is true of the claimed denominators.

The trees T' € T each consist of a single edge e(2, 1, 1) for some i (1 <1 < m).
In particular, all such trees are maximally isotropic, so S = 7. Ignoring factors
of 1—t; (see Lemma 3.2), the tree T = {e(2,1,¢)} indexes a term that contributes
a rational function with denominator

’-lT = H(l - tk/ti) H(l — titk),
ket k

by Lemma 3.1. We may disregard 1 — t;/t; by Lemma 3.3, and the remaining
factors divide G2(C), so G(C) is a denominator for P»(C). In the case of R,
the factor 1 — t? does not divide G2(R), however the corresponding numerator is
frogr=01-t)1-1/). 1

Applying Lemma 4.1, we obtain the following.
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COROLLARY 5.2: For m > 3, we have Py = Fy/G,, where Fy(t1,...,tm) Is a
symmetric polynomial of degree m(m—2) (for C), or m(m—3) (for R). Moreover,

m
2

Faltry- o tm) = (=) )2ty ot B, .00,

where e = m — 2 (for C) or m — 3 (for R).
COROLLARY 5.3: We have

1+ t1tots
Hi(l —t) Higj(l - titj)’

1
Hi(l - ti)2 Hiq‘(l - tit]’) '
Proof: By Corollary 5.2, the numerators for m = 3 have degree 3 (for C)
and 0 (for R). The latter immediately yields F»(R) = 1. In the former case, it is
immediate from the definition that the linear term of P,(C) is }_ ¢;. On the other
hand, the linear term of G5(C) is — Y t;, so the numerator has no linear term
and the remaining terms of F»(C) can be inferred from the functional equation
of Corollary 5.2. ]

Py(C)(t1,ta,t3) =

Py(R)(t1,t2,t3) =

The Poincaré series P>(C) and P,(R) were first determined explicitly for m = 2
by Formanek, Halpin and Li {FHL], and then m = 4 by Formanek in [F]. Also
in [F], Formanek notes that the Schur function expansion of Py(ty,...,ty) only
involves partitions with N2 rows, so in the case N = 2, m = N? = 4 variables
are sufficient to determine the Poincaré series for all m.

In fact, we claim that N(N — 1) variables are sufficient. By Theorem 2.2,

Pr(ti, .. tm) = H(lflt)—N “QN(t1, - tm),

I3

where Qn(¢y,...,tn) denotes the constant term in the expansion of

p(z1,---,2N) H (1- zizj_ltk)_l
i#jk

in terms of “rational” Schur functions (21 --- zn) " "sa(21,...,2n), and p = 1 (for
C)orp=3, ;22 ! (for R). 1t follows immediately from the Cauchy identity
(e.g., [M, §1.4]) that the Schur function expansion of Qn(t1, ..., %) only involves
partitions with at most N(N — 1) rows. In the case N = 2, this means that
Pa(t1,t3) contains sufficient information to determine Py(ty,...,tn,) for all m.
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COROLLARY 5.4: We have

~ a+b

P2(C)(t1""a H (1_ z)2 Z 1) + S(ab (tl) "7 )a
a>b>0

Pz(R)tl,..., H(l—t 2zsaa t1,...,t )
a>0

Proof: By Corollary 5.3, we have
- 1
C)(ty,t2) = = —1)ett t1,t
Q2(C)(t1,t2) (T4 t1)(1 +t2)(1 — t1tn) a>Zb>0( ) S(a,b)( 1, t2),

_ 1
Q2(R)(tlat2) = 1—7tlt2 = Zs(a’a) (tl,tz),

using the fact that s(, 5)(t1,t2) = t5t5 + ¢35 +--- + 185,

A determinantal formula for P,(R)(t1,...,tn) has been given by Le Bruyn [L].

Remark 5.5: For all m > 1, the denominator of minimum degree for
Py(C)(try . ytm) is Go(C)(t1;. .., tm). Indeed, if Gy failed to be minimal, then
by symmetry, the numerator F» would have to be divisible by one of 1 — ¢,
1+ty, or 1 — tyty. Furthermore, since Py(ty,...,tk,0,...,0) = Pn(t1,...,tk),
any divisor of Fn(t1,...,ts,) depending only on ¢y, ... ,t, would also be a divisor
of Fn(t1,...,tx). However Fo(C)(t1,t2) = 1 (e.g., by Corollary 5.3), so the claim
follows. Similarly, F5(R)(t1,t2) = 1, so Go(R)(t1,...,tm) is the denominator of
minimum degree for Po(R)(t1,...,tm).

6. 3 x 3 Matrices
Let [u] :==1—wand [u}, := (1 —u)(1 —u?)--- (1 —u™).

PROPOSITION 6.1: The Poincaré series for 3 X 3 matrices have denominators

G3(C)(t1,- .- tm H s [ et P12t )eed) T [tatstal,
i<J 1<j<k
Ga(R)(t1,. .. tm) = [ [ (talltsle [ ] st P 1e2,00E22]) ] [tatstal-
i i<j i<j<k

Proof: Following the technique outlined in Section 3, we first examine the trees
in 7. The members can be grouped into three types:

A(i,5) = {e(2,1,9),e(3,1,7)},
C(i,5) = {e(2,3,4),e(3,1,5)},
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where 1 < 1,7 < m. Each of these trees is maximally isotropic, so S = T.

Since G3(C) and G3(R) both have zeros of multiplicity 3 at ¢; = 1, it follows
that for each S € T, we may disregard all factors in (3.1) of the form 1 — tfEl
(Lemma 3.2). Thus we need only to examine factors of the form 1 — u*! where
w is a monomial of degree > 2 (Lemma 3.3).

In the case S = A(i, j}, the product of these factors is

T = tate) (@ = t5t).

k

This divides both G3(C) and G3(R) unless i = j. However in that case, we have
W(Ss) = W(S3) = t;, so fs = 0. That is, the numerator for the term indexed by
S vanishes.

In the case S = B(i,7) or S = C(4,j), the analogous product is

(6.1) [T = tate) (1 = tit) (1 — tatt).
k

Again, this divides both G5(C) and G3(R) unless ¢ = j. In that case, the product
includes both (1 — ¢2)?, which divides neither claimed denominator, and 1 — t3,
which does not divide G3(R). However, in the case i = j we have w(S3)/w(S;) =
t2 or w(S2)/w(S1) = t?, so the corresponding numerators fg and fs - §g are
divisible by a factor of 1 — 2 that can be canceled from (6.1). Furthermore, in
the case of R, we may cancel

gs = (L+ ¢+ (1 + 1/t + 1/t3),

against the factor 1—#3 appearing in (6.1), leaving a factor 1—¢; whose multiplicity
is controlled by Lemma 3.2. 1

Using Lemma 4.1, we may deduce the degrees of the corresponding numerators.

COROLLARY 6.2: For m > 2, we have P; = F3/G3, where F3(t1,...,tm) is a
symmetric polynomial of degree em, and e = (m? + Tm — 14)/2 (for C), or
e = (m? + Tm — 18)/2 (for R). Moreover,

Fy(tiy. s tm) = (=1)E) (g -t By, .. 1),

Note that F3(R) has degree 0 when m = 2, so we immediately obtain
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COROLLARY 6.3: We have

Py(R)(t1,t2) = !

R AR HA A
Similarly, F3(C) has degree 4 when m = 2, and hence can be computed using

Sy characters with n < 2. For this it is convenient to substitute ¢; — ¢;q so that

the variable ¢ records total degree. From the definition of 0&") in Section 2, it is

clear that 0:(,,1) is the trivial character of S; and 0:(32) is twice the trivial character

of 53, so Theorem 2.1 implies
P5(C)(t1q,t2q) = 1 + s1(t1,t2)q + 252(t1, t2)g” + O(g*)
=1+ (t1 + ta)g + (265 + 2185 + 2t2)¢° + O(d°).
From the definition of G3(C), we have
G3(C)(t1g,taq) = 1 = (&1 + ta)g — (1 + tata + 13)q” + O(¢?),
and hence
F3(C)(t14,129) = G3(C)(t1q,t2q) - Po(C)(t1q,t2q) = 1 — tatag® + O(q°).
Combining this with the functional equation of Corollary 6.2 yields
COROLLARY 6.4 (Teranishi [T1]): We have

1—tyty + t362
B Ot = e T PR

In the case m = 3, the Poincaré series have numerators of degree 24 (for C)

and 18 (for R), so we need the terms of degree 12 and 9 in order to make full
use of the functional equation. This is too large to be done by hand, but the
computation can be done easily with SF,* the second author’s Maple package for
symmetric functions [S]. The results are as follows.

PROPOSITION 6.5: We have
F3(R)(t1,t2,t3) = (1 + e3)(1 + e3 + e1e3 — exez — erezes + e§ - e%e3 + ele§
+e2e2 —e,ed +ejeqnel — €3 +ejed —ened —ef —e€),
F3(C)(ty,ta,t3) =1 —ea +e3 +eje3 + e% + 6%63 — ege3 — 2e1eze3 + eg + ege3
- 6%6263 + 26183 + ele3 + 6263 efezeg ele3 Zele2e§

+ 2e,63 — e3e? + eded + 2eeyed — 2e,ef — eled + e eled

+ 6263 6263 2e2e3 ele] + 616263 + 2616262 e§ — egeg
6 6 __ 2.6 8
+e1€§ — eyel — elel — e +ejel —ef,

where ey, e9, €3 denote the elementary symmetric functions of t,ts,13.

* Freely available at http://www.math.lsa.umich.edu/"jrs/maple.html
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Remark 6.6: By reasoning similar to Remark 5.5, it follows that for all m 2 1,
the denominator of minimum degree for Ps(C)(t1,...,tm) is G3(C)(t1,.. ., tm).
Indeed, since F3(C)(t1,t5) and G3(C)(t,t2) are relatlvely prime, this could fail
only if F3(C)(t1,t2,t3) were divisible by 1—t1¢2t3 = 1—e3. However, one can use
Proposition 6.5 to check that F3(C)(ty,ts,t3) = 2(e} —e3) mod 1 — e3. Similarly,
we have F3(R)(t1,t2) = 1 and F3(R)(t1,%2,t3) = 2(e1 — €2)(3 + €1 + e2) mod
1 — e3. Therefore G3(R)(t1,...,tm) is the denominator of minimum degree for
P3(R)(t1,- - tm)-

7. 4 x 4 Matrices

THEOREM 7.1: The Poincaré series for 4 X 4 matrices have denominators

Ga(C)(tr, - s tm) = [ ] e [T st (35108317 e 317 83 01:83)
l II [::jtk]?[t?tjtk][titﬁtk][tit}-tﬁ] I et
Ot = T TP PR
'Ek[tit;;:] R RHA AP ]A<I<Ik<l[t"tjt’°tl}'

Proof: We will first prove that

G4(C) == G4(C) - H(1 +1:) [](@ - tat)?,

i<J

G4(R) := G4(R) H1+t P IIa - tty)

i<j

are denominators for P;(C) and P4(R). A more delicate argument will then be
used to eliminate the “extra” factors.

Consider representatives of the four isomorphism classes of rooted trees in T,
say
A(Zl, 12, 23) {6(2, 1, il), 6(3, 1, iz), 6(4, 1, i3)},
B(i1,12,13) = {e(2,1,11),e(3,2,12),e(4,2,i3) },
C(i1,4q,13) = {e(2,1,4;),e(3,1,12),e(4,2,43) },
D(Z],‘lg,%g) {6(2, 1,?:1),6(3,2,’i2),€(4,3,i3)},

where 1 < i1,19,i3 < m. The remaining members of 7 are obtained from these
by permuting the vertices 2, 3 and 4. The only members of this list that are
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not maximally isotropic are the trees of the form C(3,%,7) and C(i,7,J); their
isotropic closures are

C*(i,4,5) = {e(2,1,1),e(3,1,4),e(4,2,7),e(4,3,5) },
C*(i7jaj) = {6(2, 17i))€(37 1,j),6(4,2,j),€(4,3,i)}-

In the case S = A(iy,i2,i3), the product of all factors in (3.1) of the form
1 — u*! with u a monomial of degree > 2 is

[T =i t0) (1 = tiyte) (1 — tigti).

k

If 4,142,153 are distinct, this clearly divides both G4(C) and G4(R). Otherwise,
if (say) i1 = 42 = 4, then @W(S2) = @(S3) = t;, so fs = 0, i.e., the corresponding
numerators vanish in both the C and R cases.

In the case S = B(i1, 12, 13), the relevant product is

(7.1) TT =t ti) (1 — tayta) (1 — tagti) (1 = iy iy i) (1 — iy b ti),
k

which divides G4(C) unless i; = iy = 43, and divides G4(R) unless i1, 42,13 are
not distinct. However if iy = 43, then w(S3) = @w(S;) and fs = 0, so again both
numerators vanish. If i; = iy = 4, then (7.1) includes a factor (1 — tZ)? that
fails to divide G4(R). However in that case, w(Ss)/w(S1) = t2, so the numerator
includes a factor 1 — ¢2 that can be canceled against it.

In the case S = C/(iy, i2,13) With iz ¢ {41,13} (so that S is maximally isotropic),
the relevant product is

(7.2) (1= ti,ti,) [T = it ) (1 — iy t) (1 = g bi) (1 — iy tigiti).
k

The factor 1 —¢t;,¢;, corresponds to the choice of e(3,4,42) in (3.1). Indeed, each
edge of the form e(3,4,k) contributes the factor 1 — u, where u = txt ti;/ti,.
However u*! is not a monomial unless k = 2. It is easy to check that (7.2)
divides both G4(C) and G4(R) unless i; = i3 = 4 for some ¢. In that case,
(1 —12)3 divides (7.2), whereas G4(C) is only divisible by (1 —t?)? and G4(R) by
1 — 2. However w(S,)/w(S1) = t2, so fs includes (1 — tZ)(1 — 1/t?) as a factor
that can be canceled against (7.2).

In the case § = C*(i,1,j), note that there are two trees T € T that are
subgraphs of S, and hence P is (a limit of) a sum of two rational functions of the
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form fr/hr (for C) or frgr/hr (for R). However the numerators corresponding
to both trees have a common factor 1 — (2,1,7)/£(3,1,4) that vanishes in the
limit ¢(c, 3, k) — tk, so S contributes nothing to either Poincaré series.

In the case S = C*(4,7,7), we may assume ¢ # j; otherwise we are in the
previous case. Since ny 4 = 2, it follows that the product of all factors in (3.1) of

+1

the form 1 — «*" with u a monomial of degree > 2 is

TI = tate)3 (0 = t5t0)3(1 = tatjt)™.
k

This divides both G4(C) and G4(R), but not G4(C) and G4(R). The failures are
caused by the presence of the factors (1 — ¢;¢;)® and (1 — ¢2)3(1 — t?)s.

In the case S = D(4,1i2,13), the relevant product is

(7.3) a- [ (1 —ti t) (1 =ty i) (L= tig b ) (1= L, iy i) (L — by by i) (1 — b, iy iy i),
k

where a denotes the product of all distinct expressions of the form
1—tt,, 1—t,t,, 1—1t;,t,,

corresponding to the factors in (3.1) indexed by the edges e(4, 1, k) (k = i3, 12,%1)-

If ¢1, 4y, %3 are distinct, then it is not hard to check that (7.3) divides G4(C) and
G4(R). If i) = iz = i3 = i for some 4, then (7.3) simplifies to

A=) [T = tat)® (1 — 24,)%(1 — £38,),
k

which fails to divide both G4(C) and G4(R). However w(S,) =t~ ! (1 < a < 4),

SO

fo=(1-t)°(1—1/t:)°(1 =) (1 = 1/¢2)*(1 - £3)(1 — 1/£3),
gs = (L+ )1+ 1/t)(1 + )1 + 1/¢3).

When these are canceled against (7.3), the results divide G4(C) and G4(R).

Continuing the hypothesis that S = D(iy, iq,i3), consider the possibility that
i1 =142 =tand i3 = j, or 41 = j and i3 = 43 = 7, for some i # 7. In this case,
(7.3) simplifies to

(7.4) (1—)(1 = tit;) [ [(1 = tatn)> (X — t5t) (1 — 24,)(1 — tatita) (1 — £2¢,1,).
k
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This is divisible by (1 —¢2)3 and (1 —t;¢;)°, so it fails to divide both G4(C) and
G4(R). However fg includes the factors (1—¢2)(1—1/t?) and (1—¢;t;)(1—1/t;t;).
When these are canceled against (7.4), the results do divide G4(C) and G4(R).
On the other hand, if 4; = i3 = ¢ and i3 = j, then (7.4) should be modified by
replacing 1—t2¢, with a second copy of 1 —t;t;t5. Again, the factors (1—¢2)® and
(1 —t;t;)° are the only obstructions to divisibility, and again the corresponding
numerators include factors of the form (1 —#;¢;)(1 — 1/t;¢;) (in fact, the square
of such a factor appears). However in the case of C, the numerators have no
factors of the form 1 — ¢ or 1 +¢;. Thus the remaining part of (7.4) divides
G4(C) [1,(1 + tx), but not necessarily G4(C). On the other hand,

gs = (L4+) (1 4+ 1/t:)(1 + ;) (1 + 1/tit;),

so the remaining part of (7.4) does divide G4(R).

The preceding argument shows that 6’4(6_’ ) and @4(R) are common denomina-

tors for each of the rational functions that appear in the expansions of P4(C) and
Py4(R). Moreover, the only terms that G4(C) and G4(R) fail to “denominate” are
those indexed by the graphs isomorphic to C*(i, 4,7) (in both cases) or D(i, j,1%)
(in the case of C), for some ¢ # j.

Henceforth, let us fix i # j, S = C*(i,4,7), and T = D(i,4,¢). To finish, it
suffices to prove the following.

(a) Ps(R) has a pole at t; = —1 of multiplicity at most one.

(b) Ps(R) and Ps(C) have denominators that are not divisible by (1 — t;¢;)*.

(c) Ps(C) + Pr(C) has a pole at t; = —1 of multiplicity at most two.

To prove (a), let T" = C(3i,4,7) and T” denote the two spanning trees of S
in 7. Recall from the proof of Lemma 3.1 (see (3.2)) that there is a rational
function of the variables u = t(4,3,4)t(3,1,7)/t(4,2,7)t(2,1,1) and t(«, 8, k), say
Q(u), such that

grfr _ QM) 4 grfrr Qu) — —uQ(u)

hps _l-u’ hTH —1—11,‘1 1—u
Furthermore, Q(u) is nonsingular in the limit © — 1. It follows that
= Q1) —uQw) _ » ~
Ps(R) = t{a.B.K) 1—u BRARARACE

u—1

treating u as an independent variable. It is easy to check that hg /(1 — u) has
a zero at t; = —1 of multiplicity two in the limit ¢(c, 8,k) — tg. Similarly, the
numerator includes

gr = (L+t:)(1+ ;) - (1 4+ 1/8:)(1 + 1/¢5),
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so Q(1) is nonsingular in the limit ¢; — —1. Furthermore, by logarithmic differ-
entiation we may write Q’(1)/Q(1) as a linear combination of terms of the form
F'(1)/F(1), where F{u) ranges over the factors appearing in the numerator and
denominator of Q(u). However, each such factor F'(u) has the property that F(1)
has at most a simple zero at t; = —1, so Q’(1) must have at most a simple pole
at t; = —1.

Similarly, to prove (b) for R, one can check that in Q(u) there are two factors in
the numerator and four factors in the denominator that are divisible by 1—¢;¢; in
the limit « — 1, t(a, B, k) — tx. In Q(u), these factors are (1 —ut;t;)(1—1/ut;t;)
in the numerator and (1 —t;¢;)?(1 — ut;t;)? in the denominator. Hence Q(1) and
Q'(1) both have denominators in which 1—¢;t; occurs with multiplicity at most 2.
Essentially the same argument applies in the case of C as well.

To prove (c), it suffices to show that
(7.5) tignll(l +t)3Pp(C) = — t}ifril(l +1,)3Pg(C),
since we have already shown that Ps(C) and Pr(C) both have poles of order at
most 3 at ¢£; = —1. From the definition, we obtain

ARIAR A EARI VA AR A1V R

Pr= [Leltte)?tsteltt ]2 (678t ) b /it 12 [tn /820, Tl ses [t /431 Tl [tn /23]

Taking into account the vanishing factors [t2]2[1/t?], it follows that

1 1
(7.6) lim (1+¢)3Pr=-2- .
tim=1 ,L[l [—tel®(E5te][—tste] [t /5] kl;é_i[,j [te/t5]?
To compute the analogous limit for Pg, note that by reasoning similar to (a), we
have
Ps(C) = Z(1) + Z'(1),

where Z{u) is the rational function of u and (e, 3, k) such that

v _ 2 frv 2w

, and = T
th 1—u an hTw 11—yt

and u, T',T" are as defined above. Since Z(1) has a pole of order 2 at t; = —1,
it contributes nothing to the coefficient of (1 +¢;)~2 in the Laurent expansion
of Ps. Furthermore, by logarithmic differentiation it follows that Z’(1) is Z(1)
times a linear combination of expressions of the form F'(1)/F(1), where F(u)
ranges over the factors appearing in the numerator and denominator of Z(u).
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There is exactly one factor, namely, F(u) = 1 — ut? such that F'(1) # 0 and
F(1) vanishes at ¢; = —1, and it appears in the denominator. Hence this is the
unique factor such that F'(1)/F(1) is singular at t; = —1, it has a residue of
—1/2, and (as a factor of the denominator) it occurs with coefficient —1. Thus

t_liﬂl(ut) Ps(C) = (1/2) _li)rgl(1+ti)22(1).
Since Z(1) = (1 — u) fr'/hr, we find

2(1) = [t 2 [L /42 6512 (1 /8502 it ] (1 /i)t /2511t /8]
[Teltatel?[t5te)2[tatstel b /tits]{tets /i) (Eti /] TLiopa b/ 8312 Tlies (b /8517

and therefore

1
lim (1+6)2Z(1) = 4-
Jm (14 H e Tt =t )2 tk/t]2H tk/t

Comparing this with (7.6), we obtaln (7.5). |

Again via Lemma 4.1, we obtain the following.
COROLLARY 7.2: For m > 2, we have Py = Fy/Gy4, where Fy(ty,...,ty) is a
symmetric polynomial of degree em, and e = (™; ') + 6(™;") + 14(m — 1) — 6
(for C), ore = (";') +6(™;") +14(m — 1) = 9 (for R). Moreover,

F4(tlv“'7tm)2(-1)k_1(t1' ) F4( a t7_n1):

where k = () + (3) + (7)-

In particular, F3(C)(t1,t2) and Fy(R)(t1,t2) have degrees 16 and 10 and can

be determined by a Maple computation of their terms of degree < 8 and < §
(respectively) via Theorem 2.1. The results are as follows.

PROPOSITION 7.3: We have
Py(C)(ty,ts)
_(Q-tita + 1313 (1 — extats + e t3t3 + e2t242 + e, £33 — e 1115 + t815)
[txlaltelaltrta] [ty 5] [£320]2 [t1 3] (32 ET43)] ’
1+ 822 + 1263 + 343 + £33 + 345
[Ea][Ea)a(tal(talaltatal? 62512 (12,12 £3] (632, (£143])

Py(R)(t1,ta) =
where e = t1 + t2.

We remark that Teranishi calculated Py(C)(t1,ts) in [T2] (Theorem 4.1),
although with a denominator that is a multiple of the one we use here. There are
also typographical errors in the numerator (for example, the formula as printed
is not symmetric).

We conclude with two conjectures.
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CONJECTURE 7.4: G4(C) and G4(R) are the denominators of minimum degree
for Py(C) and Py(R).

Since Fy(t1,t2) and G4(ty,t2) are relatively prime (for both C and R), it follows
that this conjecture could fail only if 1 —t1tat3 or 1 — t3tyts divides Fy(ty,t2,t3),
or 1 — tytotsty divides Fy{ty, ..., t4).

For all N > 1, let Dn(t1,...,tm) denote the denominator of minimum degree
for the Poincaré series of either C or R.

CONJECTURE 7.5: We have

(a) Dn(t1,...,tm) = (1—uy) -+ - (1—uy), where each u; is a monomial of degree
<N.

(b) Dn(t1,-.-stm,0) = Dn(t1,---:tm)-
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